Monday, April 1, 2019

Effect of Tulsi and Neem Extract on Mosquito Larvae

Effect of Tulsi and nim tree take away on Mosquito Larvaeenquiry questionWhat atomic get a line 18 the effects of medicinal full kit and boodles standardized Ocimum holy of holies (tulsi) and genus Azadirachta indica (neem) commit on the mortality of genus genus Culex larvae?ABSTRACTThe effect of neem and Tulsi on mosquito larvae. The project is aimed at finding intrinsic chapicides or bio-pesticides that hard-hittingly fancy the mosquito macrocosm by putting to death mosquito larvae. They could be utilize as alternatives to the original pesticides utilize that rich person adverse effects on the environment and an new(prenominal)(prenominal) species be military positions the target pest. Mosquitoes atomic number 18 hosts for a in truth(prenominal) commodious number of sicknesss and therefore keeping larvae under deem and dis completelyowing the emergence of adult mosquitoes is essential. twain name purifys fetch been established arishth and Tulsi. The i nitial assumption was that both kick ups would have some effect on the immature development and beget mortality in the larvae imputable to the properties of both vegetations. The secondary initial hypothesis was that neem call down would be signifi slewtly more than stiff in cleaning the larvae than Tulsi at the alike percentage. Concentrations of 1% to 10% of each repeat were prep argond and 10 trials each performed with 10 larvae were underinterpreted. The samples were checked on after 12 mos and once again after 24 hours and the number of larvae killed in each case was enter. The results were conclusive and both extracts were very effective at killing larvae at 10% with neem tree killing an average of 10 larvae off of 10 and Tulsi 9.6 0.52. However t- hold dears showed that the initial hypothesis stating that neem tree would be more effective at all compactnesss was incorrect and only 2%, 9% and 10% were signifi force outtly more effective in 24 hours with t v alue of 3.13, 2.92 and 2.43 respectively ( table value of 2.10). This nastys that in 2%, 9% and 10% minginesss, Neem should be apply preferably of Tulsi as it is importantly better. This is all very exciting as environmentally safer pesticides fundament be developed from these two lay down extracts.1. IntroductionResearch questionWhat be the effects of medicinal implants like Ocimum sanctum (tulsi) and Azadirachta indica (neem) extract on the mortality of Culex larvae?The conservative pesticides are augmented to combat complicated pest problems in mosquitoes. In military man health during the past few decades these pesticides played an important role in the crucifyion of diseases ca employ by mosquitoes either by inactivating or killing these mosquitoes. by and by on when these pesticides are getting accumulated in the environment prove to be hazardous to the environment and mankind. Frequent application of synthetic fundamental insect powders resulted into pest imp edance and outbreak. well-nigh of the insecticidal compound follows within four main classes namely organochlorides, organophosphates, carbamates and pyrethroids. Out of these the major classes of insecticides, the insecticides used in accede situation are organophosphates and carbamates. There are problems of pesticides resistance and negative impacts on non-target organisms including man and the environment.1Environment problems due to the insecticides and pesticides such as destruction of unsp oil colort organisms, non-target pest, some of the pesticide residues in the host plant resulting in stunted acquire or killing other organisms have come to an end. This organise is essentially interpreted up by some of the herbal plants. These herbal plants make some of the active ingredients which are eco-friendly but simultaneously have a severe effect on the mosquito populations.2Medicinal plants are the most promising source and under extensive trails for their biological a ctivity against various mosquito larvae. During the pull round 10 to 15 years, interest in botanical insecticides has change magnitude to come along for substitutions for synthetic insecticides with those based on innate(p)ly occurring substances. The use of botanicals in pest management is not only effective for suppression of pest population but in addition helps to maintain the sound ecological balance.3BOTANICALS IN engageThe groups of plant possessing insecticidal substances are enormous. More than 2400 species of the plants in India possess insecticidal properties3. In the spunk of the 17th century, most of the economically important natural plant compounds obtained from the plants like neem, tulsi, adathoda, chrysanthemum, turmeric, garlic, tridax and so forth are used in commercial insect wangle. patronage the relative safety of the well-known botanical insecticides, most of these substances have their drawback hinder astronomic-scale application. The chemicals ob tained from these plants are unstable in the cheer and are speedily metabolized thus limiting their potency and application.4Botanical insecticides break down pronto in soil and are not stored in animal and plant tissue. Often their effects are not as long perpetual as those of synthetic insecticides and some of these products whitethorn be very backbreaking to find. The plant parts used for extr performance or assay were the leaves, roots, tubers, fruits, beginnings, flowers, the whole plant, bark, sap, pods and wood. The most mutually utilized parts were the leaves, roots. The plant families Asteraceae, Fabaceae and spurge family contain most of the insecticidal plant species reported. youthfully several other plants viz. Neem, Adathoda, Chrysanthemum, Turmeric, Onion, Garlic, Ocimum, Ginger and some other plants have been reported as insecticidal plants which back end be used in insecticide preparation. The leaf extracts of Tulsi (Ocimum basilicum, O. sanctum) and vetiv er (Vetivera zizanoides) are utilizable in harbourling leaf miners in potato, beans, eggplant, tomato, chilies, etc. Some of the plants having herbal insecticide principles are typifyed on table.Source of Plant Nature of action Chemical Group Plant parts Azadirachta indica Contact poison Azadirachtin Leaves, seed Ocimum sanctum Contact, Repellent Tulsin Leaves Chrysanthemum Contact, Repellent Pyrethrin I Flower, seed Tridax procumbens Contact poison Flower Zingiber officinale Repellent zingibereneRhizomeAmong all the important insecticidal plants, Neem (Azadirachta indica) is the most promising source of bio-pesticide and its various formulations are extensively used for pest control.5 Neem leaves, stems, seeds and oil have been used for pest control in sericulture.6 The limonoids present in it and its products have make it a harmless to mankind while functioning as insecticide, bactericide, fungicide, pesticide etc. It is likely to provide a ascendent to many of pest and disea se problem in sericulture.7 Generally, extracts of plant leaves or seed are nimble and sprayed otherwise, seeds are alter under sunshade, pulverise finely and applied as dust.More than 20 Neem based biopesticides are available in the market ( control board 3). Neem gets bio de call upd in a matter of weeks when ex becomed to sun blithesome or in soil. Neem products are highly photodegradable and normally degrade within a week. zero(prenominal)problem of development of pest resistance and resurgence has been reported from neem products. Hence they have characteristics suitable for IPM st come outgy. lots of the informations are available on insecticidal properties of plants having some sort of toxic attribute against insects. The plant parts to be used should be removable leaves, flowers or fruit and harvesting should not mean destruction of the plant.Azadirachta indicaNeem is perhaps the most well known of all herbs and has been used in ayurveda in India for centuries. The activ e ingredient in Azadirachta indica (neem) is azadirachtin. It a part of the Meliaceae family and is a botanical cousin of mahogany. Neem is very se bring round and virile. Neem is especially useful due to its climatic tolerance that allows it to be grown all over the world though it is usually effectuate in tropical regions. It has insecticidal, antifeedant, growth regulating and development-modifying properties and has properties that make it attractive in insect control. It reduces fecundity and longevity as well as increased development judgment of conviction of immature insects. On insects it has been shown to act as a growth retardant and father cast off disorders, change of behavior and morphoge kaleic defects. Mosquito control is essential as they act as carriers for malaria, filariasis and a host of other diseases as well as being a nuisance. There is a high demand for a less environmentally harmful insecticide as the unrivalleds currently used have high neurotoxic ef fects. Recent studies have also demonstrated neem-induced effects on vitellogenesis and severe depravity of follicle cells during oogenesis in mosquitoes. It also has several medical properties such as a cure blood morbidity, biliary afflictions, itching, skin ulcers, burning sensations and pthysis. It is also an effective cure against ringworm, eczema and scabies. In English the tree is known as arishth and attains a maximum height of 40 to 50 metres.Ocimum holy of holiesTulsi is an aromatic plant in the Lamiaceae family. Tulsi has been used for thousands of years in Ayurveda due to its diverse healing properties. Tulsis extracts are used in ayurvedic remedies for common colds, headaches, stomach disorders, inflammation, heart disease, various forms of poisoning, and malaria. Traditionally, tulsi is interpreted in many forms as herbal tea, arid powder, fresh leaf, or mixed with ghee. Essential oil extracted from Karpoora Tulsi is mostly used for medicinal purposes and in herbal cosmetics, and is widely used in skin preparations due to its anti-bacterial activity. For centuries, the dried leaves of Tulsi have been mixed with stored grains to thrust insects.8These plants in harmonious integration with other safe method actings of pest control like biological control can provide eco-friendly and economically practicable results for pest problems in near future.ADVANTAGESPlants producing the compounds having insect growth regulators (IGR), feeding deterrents, repellents and confusants activities are known by the farmer because most of the beat they grow in the identical general area. Some of these products may be these products act very quickly mastering insect feeding even though long boundary they do not cause insect death. Since most of these products have a stomach action and are rapidly decomposed they may be more selective to insect pests and less aggressive with natural enemies. Most of these compounds are not phytotoxic and have rapid action an d low toxicity to mammals and plants. resistance to these compounds is not developed as quickly as with synthetic insecticides.DISADVANTAGESMost of these products are not truly insecticides since many are merely insect deterrents and their effect is slow. They are rapidly degraded by UV light so that their residual action is short and breakdown is rapid, requiring more fine timing of and/or more frequent application. no(prenominal) all plant insecticides are less toxic to other animals than the synthetic whiz(a)s. They are not necessarily available and sometimes cost is more. Most of them have no established residue tolerances and there is lack of turn up data and sometimes lack of state registration of some materials. There are no legal registrations establishing their use. Not all recommendations followed by growers have been scientifically verified. The to a higher place statements are altered if you find anything that can be added or deleted you can do it.Insects adapt the mselves to aquatic habitats inspite of their terrestrial origin. The aquatic and semi-aquatic insects are unique for their diversity of forms, reflecting adaptation to a wide variety of niches such as salt weewee pools, saline ponds, hot springs, high mountain lakes, large rivers, temporary and permanent ponds.Mosquitoes are known as vectors of the pathogens ca utilize human race diseases. They belong to the order Diptera the true locomote. Like all fly they have two wings but unlike other flies they have scales and the females have sucking proboscis. There are over 2500 species of mosquitoes. Culex mosquitoes are known to be painful and persistent biters and are a nuisance.The reason why I chose this topic is because the pesticides that are currently used in pest control contain chemicals that have diverse side effects on the environment and organisms other than the target pest. I firm to use natural substances bring in nature and see if they would work as a form of pest con trol instead. I have used two extracts Neem and Tulsi, in order to see which one was more effective in killing these mosquitoes. Neem, Tulsi and eucalyptus have been used as they are prevalent in the tropical and sub-tropical countries of Africa and Asia with a large mosquito population and there have been significant prospects of being used as an insecticide on a commercial scale due to their useful properties.AimIn early literature mentioned above it was noted that the mosquitoes inhibit both temporary and fresh water stagnant bodies and they are found in abundance ca employ nuisance to the human population. The aim of the present landing field was undertaken on the following aspects1. To determine the number of Culex larvae killed in 12 hours and 24 hours apply polar plant extracts like Neem and Tulsi in crude form.2. To determine the number of Culex larvae killed in 12 hours and 24 hours by Neem and Tulsi under various immersions (1%-10%).3. To determine the statistical ana lysis t tests were performed.2. Materials and Method2.1. Materials / Equipments250 ml beaker, Mortar and pestle, Pipette, Stirrer, Water, Fishing net (for catching larvae), Dropper, Watch glass, Petri dishes.Culex larvaeFor the present study, the larvae of Culex mosquitoes were used end-to-end the investigation. These larvae were chosen because they were most abundant in the water bodies which are very active fast wriggling movement. The Culex larvae were collected from stagnant water bodies at Varthur Lake in Bangalore (fig.1) using a hand net. They were transported in fictile buckets containing clean water to the lab. Larvae were categorized based on their size as large and humble. The large sized Culex larvae were about 0.7 cm and the small sized Culex larvae measured about 0.2cm in length. For the present study I have used only large sized larvae (3rd and fourth instars stage).Medicinal plants used as extractsBotanical nameCommon nameMedical PurposesPart of plant usedOcimum sanctumTulsi employ to treat digestive problemsYoung leavesAzadirachta indicaNeemKills pathogens. Used to cure skin ailments.Young leavesPreparation of Stock baseAzadirachta indica NeemI collected neem leaves from my school campus. moreover young leaves were collected and dried in the absence of sunlight in the shady region. The complete method of preparing 10% note solution of this plant extract is mentioned below. 10 grams of dried young leaves were then grinded using mortar and pestle along with methanol and dried. Then add 100 ml of distilled water to make out 10% conduct solution. Then the 10% neem tune solution was decanted after centrifugation. Now from this 10% stock solution disparate assiduousness solutions in percentage were active ranging from 1% 10% i.e., 10ml of 10% stock solution in 90ml of distilled water turn overs 1%, 20ml of 10% stock solution in 80ml of distilled water lead give 2%, 30ml of 10% stock solution in 70ml of distilled water result give 3 %, 40ml of 10% stock solution in 60ml of distilled water will give 4%, 50ml of 10% stock solution in 50ml of distilled water will give 5%, 60ml of 10% stock solution in 40ml of distilled water will give 6%, 70ml of 10% stock solution in 30ml of distilled water will give 7%, 80ml of 10% stock solution in 20ml of distilled water will give 8%, 90ml of 10% stock solution in 10ml of distilled water will give 9%, and for 10% the stock solution itself was used.Ocimum sanctum TulsiI collected Tulsi leaves from my school campus. Only young leaves were collected and dried in the absence of sunlight in the shady region. The complete method of preparing 10% stock solution and the variant concentration of this plant extracts in percentage was done by same method as mentioned above in Neem.2.2. Method / Procedure fatality rate of larvae using crude plant extracts1. The large sized Culex larvae were taken in the petridishes.2. 5 ml of crude plant extracts of neem and tulsi were taken in the diffe rent test tubes.3. 10 larvae were introduced in each test tube at the same time.4. Ten trails were carried out for the two different plant extract.5. The number of larvae killed was record for 1hr, 12hr and 24 hr.6. Larvae were feed with dog cookie powder.7. Comparative analysis was carried out graphically between the two plant extracts at different time period.deathrate of larvae using different concentration of plant extracts1. The large sized Culex larvae were collected and separated in the petri dishes.2. 5 ml of 1% Neem extract was pipetted in the test tube using a graduated pipette.3. 10 Culex larvae were introduced and the time was noted.4. Ten trials were carried out at the same time for different concentration.5. The larval mortality was recorded for 12 hours and 24 hours.6. The same procedure was followed for different concentrations 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% 10% of the Neem extract.7. During this experiment the larvae was feed with dog biscuits in powdered form.8. T he above mentioned procedure was also carried out using Tulsi plant extract.9. A comparative study of larval mortality was made by using these two plants extract on the Culex mosquito larvae.The percentage of mortality (which will give us an indication of the effectiveness of the extract) will be cypher using the following formula.Percentage of mortality = Number of dead larvaeNumber of larvae introduced X 1002.3. VariablesDependant variable- Number of larvae killedIndependent variable-Different concentration of neem extract and tulsi extract, different time period 1hr, 12 hrs, 24 hrsControlled variable-Number of larvae, Volume of water, Temperature, pabulum2.4. HypothesisHypothesis 1Null Hypothesis (Ho) Neem and Tulsi have no significant the mortality of the Culex larvae.Positive hypothesis (H1) Neem and Tulsi have a significant effect on the mortality of the Culex larvae.Hypothesis 2Null Hypothesis (Ho) There is no significant going away in the rate of mortality between Neem a nd Tulsi plant extracts.Positive Hypothesis (H1) There is a significant difference in the rate of mortality between Neem and Tulsi plant extracts.3. Results5.1 death rate of larvae using crude plant extractsThe Culex larvae were exposed to different plant extracts in crude form to study the mortality rate. The number of Culex larvae killed was recorded after 1 hour, 12 hours and 24 hours separately (Table 1).In one hour the mean number of larvae killed by Neem was 4.90.74 and for Tulsi it was 3.51.08. As time progresses the difference in effectiveness becomes less and the two extracts are well-nigh equal. The crude extract of Neem was more effective than Tulsi in one hour duration. At 12 hours the mean number of mosquitoes killed were 9.21.14 and 81.05 respectively. At 24 hours the Neem and Tulsi extracts showed almost the same level of effectiveness with mean values of 10 and 9.70.48 respectively.The crude form of Neem extract was significantly more effective than Tulsi in killing the Culex larvae in 1 hour and 12 hours. However in 24 hours there is no significant difference in the effectiveness of Neem and Tulsi plant extracts.5.2 Mortality of larvae using different concentration of plant extracts5.2.1. NeemThe mortality of the larvae using different concentrations of Neem extract was recorded. At 1% concentration the mean number of larvae killed was noted to be 2.4 0.52 in 12 hours and 3.5 0.53 in 24 hours. At 10% concentration the highest mortality rate was recorded as 9.6 0.52 and 10 for 12 hours and 24 hours respectively. As the concentration of the Neem extract increased, the mortality of the larvae also steadily increased (Table 2).5.2.2. TulsiThe mortality of the mosquitoes for Tulsi extract was recorded in the same way as Neem. At 1% concentration the mean number of larvae killed was noted to be 1.8 0.63 in 12 hours and 3 0.67 in 24 hours. At 10% concentration the highest mortality rate was recorded as 8.7 0.67 and 9.6 0.52 for 12 hours and 2 4 hours respectively. As the concentration of the Tulsi extract increased, the mortality of the larvae also steadily increased (Table 3).Table 1 Mortality of larvae using crude plant extractTrail sNo. of larvae killed1 hour12 hours24 hoursNeemTulsiNeemTulsiNeemTulsi1521091010243106109355771010464108101054387109654109101076498101084510910109538910101052108109 cockeyed S.D4.90.743.51.089.21.1481.051009.70.48T- test3.382.451.96CalculationsT value=Degree of freedom = 20 -2 = 18Level of significance= 0.05Table t value = 2.10Neem and Tulsi in 1 hour work out T value= 4.9- 3.5 / (0.74)2 + (1.08)2 /10 = 3.38Neem and Tulsi in 12 hours cipher T value = 2.45Neem and Tulsi in 24 hoursCalculated T value = 1.96Graph video display the mortality of larvae using crude plant extractTable 2 Mortality of larvae using different concentration of Neem extractsS. No.Different concentration of Neem extract %Mean No. of larvae killed12 hours24 hours11%2.4 0.523.5 0.5322%3.2 0.634.3 0.4833%3.9 0.575 0.6744%4.6 0.75.9 0.7455%5.3 0.676.4 0.766%5.8 0.427 0.6777%6.5 0.857.5 0.5388%7.4 0.528.6 0.799%8.6 0.849.8 0.421010%9.6 0.5210Graph wake the mortality of larvae using Neem plant extractTable 3Mortality of larvae using different concentration of Tulsi extractsS. No.Different Concentrations of Tulsi ExtractMean No. of larvae Killed12 hours24 hours11%1.8 0.633 0.6722%2.6 0.73.6 0.5233%3.3 0.674.4 0.744%4.1 0.745.3 0.8255%4.8 0.795.8 0.7966%5.4 0.526.7 0.4877%6.2 0.797.4 0.788%7 0.678.1 0.5799%7.9 0.579.1 0.631010%8.7 0.679.6 0.52Graph Showing the mortality of larvae using Tulsi plant extractTable showing the comparative mean mortality of the larvae using Tulsi and Neem extractsDifferent ConcentrationsMean No. of larvae Killed in 12 hoursMean No. of larvae Killed in 24 hoursTusliNeemTulsiNeem1%1.8 0.632.4 0.523 0.673.5 0.532%2.6 0.73.2 0.633.6 0.524.3 0.483%3.3 0.673.9 0.574.4 0.75 0.674%4.1 0.744.6 0.75.3 0.825.9 0.745%4.8 0.795.3 0.675.8 0.796.4 0.76%5.4 0.525.8 0.426.7 0.487 0.677%6.2 0.796.5 0.857.4 0.77.5 0.538%7 0.677.4 0.528.1 0.578.6 0.79%7.9 0.578.6 0.849.1 0.639.8 0.4210%8.7 0.679.6 0.529.6 0.5210Graph comparing number of larvae killed using both plant extracts in 12 hoursGraph comparing number of larvae killed using both plant extracts in 24 hoursT Values at Different concentrations of Neem and Tulsi extractConcentration of Neem and TulsiCalculated t value in 12 hoursCalculated t value in 24 hours1%2.321.852%2.143.133%2.161.964%1.551.725%1.531.806%1.891.157%0.820.368%1.491.759%2.182.9210%3.362.434. DiscussionA t-test was performed for the values obtained for the comparison of the crude extracts. The t-test values for crude Neem and Tulsi extracts are effective if seeing if Neem is significantly more effective than Tulsi in a certain time period. The calculated t value for 1 hour is 3.38. This is higher than the table t value of 2.10. Hence in 1 hour Neem is significantly more ef fective in killing larvae. In 12 hours the calculated t value is 2.45 and therefore we can draw the same conclusion. However in 24 hours the calculated t value in 1.96 and thus there is no significant difference in the effectiveness of Neem and Tulsi. By this point it is evident that, as far as Hypothesis 1 is concerned, that both Neem and Tulsi are effective in killing mosquito larvae. With regard to the crude extract we can say that in 1 and 12 hour periods, Neem is more significantly more effective but not in 24 hours (Hypothesis 2).T-tests were also performed to compare the significant difference in mortality of Neem and Tulsi extracts at different concentrations. Separate t-tests were performed for 12 hours and 24 hours.As seen in the tables above the t-values are significant in 12 hours for 1%, 2% and 3%. They are significant as at these concentrations the calculated t values are greater than the table t value of 2.10. It is also observed in 9% and 10% concentrations in 12 hou rs. In 24 hours significance is observed in 2%, 9% and 10%. What these means is that for these concentrations in their respective time periods, Neem is significantly more effective than Tulsi in killing larvae.The main effect that Azadirachta indica has on larvae is the growth regulatory effect. It is because of this property that Neem acts as an excellent natural insecticide. Exposure of culex larvae to sub lethal doses prolongs the larval development and causes cut pupal weight and oviposition. Neem works by intervening at several stages of the insects life. The ingredients present in Neem are approximately the same shape and structure of vital hormones for the insects. The larvae absorb these Neem compounds as if they were received hormones which blocks their endocrine systems. This leaves the insects so sonfused in brain and body that they cease to produce and thus the population plummets.Tulsi extract exhibits high mortality, especially during the molting process. The moltin g of larvae takes place under the influence of the ventral nerve cord neurosecretory cells. These cells firing the tanning hormone. The extract may have an inhibiting effect on such cells. They may also act on epidermal cells that produce enzymes obligatory for the circular oxidation process. twain plant extracts impact reproduction and inhibit the emergence of adult mosquitoes from their larvae. They also decrease the feeding time for larvae and cause less food to be ingested. This has been noted to cause a fall in the carbohydrate levels of the larvae. A study noted that the extracts cause the measuring stick of DNA and RNA in the larvae to fall thus suggesting that the extracts may affect nucleic acid synthesis. The feeding in the larvae may have decreased due to indigestion caused by the plant extracts as they inhibit metabolic processes. 9Both Ocimum sanctum and Azadirachta indica are available easily and in large quantities. They do not require professional handling, are brassy and safe which makes them very valuable as pesticides. Additionally Tulsi has properties that enable it to clean water. The extracts could help replace harmful pesticides used such as dichlorodiphenyltrichloroethane as they are safe for non target animals and do not pose residue problems but are still effective in killing larvae and suppressing the adult mosquito population. In conclusion further effort should be taken to produce bio-pesticides from Neem or Tulsi as well as look for to find other plants products that may be more ideal. UV rays may affect the Neem and Tulsi extracts thus qualification them ineffective so explore should be done in order to find plant products that do not degrade in the presence of sunlight thus making them completely versatile.5. Summary* The findings have important implications in the practical control of mosquito larvae, especially, in a polluted aquatic environment.* Ocimum sanctum and Azadirachta indica are the two plants out of which t he extracts were prepared.* Solutions of concentrations varying from 1% to 10% were prepared from the stock solution for each plant.* Each concentration was tested on 10 larvae. 10 trials were undertaken and the results were noted.* Both plants were deemed effective as far as larval mortality in concerned. Neem extract had a slenderly higher mortality rate.6. Bibliography(Singh et al. 2000, 2004). Pest management in sericulture (2000), Properties and potential of natural pesticide against sericulture pests. Publ. Zool. Soc. India. pp. 200-206(Singh and Saratchandra, 2002). An Integrated approach in pest management in sericulture, Int. J . Indust. Entomol. 5, 141-151(Baskaran and Narayanswamy, 1995) Traditional pest control. Caterpillar Publications. Tamil Nadu, India.(Casida, 1983). Development of synthetic insectide from natu ral products. plate History of pyrethroids from pyrethrins.(Schmutterer, 1990). Properties and potential of natural pesticide from Neem tree. Ann. Re

No comments:

Post a Comment